\qquad Core: \qquad

Let's Get Moving!

Show What You Know

1. Motion of an object can be described based on three factors: the \qquad of the object, the
\qquad of the motion, and its \qquad as it relates to another object. The length an object moves through its motion is called \qquad .
2. The \qquad of the place or object describes its position.
3. To accurately describe a position and be able to find it, you should use one of the following: a
\qquad point or the geographic coordinates (\qquad and \qquad).
4. A \qquad point would be a location to which you compare another location.
5. When an object changes position over time relative to a reference point, the object is said to be in
\qquad .
6. The motion of an object is always judged with respect to some other \qquad or
\qquad .
7. Sometimes how an observer sees motion depends on how it compares to their own motion and the
\qquad -- \qquad -- \qquad of the person observing a position or motion.
8. The location and motion of the observer may alter the \qquad of reference, and the observer would observe the motion relative to their own position.
9. There are two ways distance can be measured...along a \qquad line/path like if you were to fly in a plane from one state to another or the \qquad length of the path as if you were to walk a designated trail on a hike. This length/distance you move through your motion could vary depending on how it is measured.
10. The \qquad of a moving object is a measure of how quickly or slowly the object gets from one place to another or changes position or the distance traveled per unit time.
11. Speed uses a formula $S=$ \qquad and uses the common units: $\mathrm{mph}, \mathrm{km} / \mathrm{hr}, \mathrm{m} / \mathrm{s}$
12. This formula can be used to calculate any of the three unknowns...speed, distance or time. Use this triangle to show how with the 3 different formulas.

13. There are 3 types of speed you might be asked to calculate...describe how you would figure out each:

- Average speed--
- Constant speed--
\qquad
- Variable speed--

Name: \qquad
Date: \qquad Core: \qquad
14. To illustrate motion on a graph, a \qquad line on a distance/time graph represents a constant speed.
15. To illustrate motion on a graph, a \qquad line in a distance/time graph represents varied speed over a certain time.

Practice: Match the term with the concept being implied or demonstrated.

\qquad 1. Raleigh, NC is about 262 miles SW of our Nation's capital, Washington DC.
\qquad 2. $38.8951^{\circ} \mathrm{N}, 77.0367^{\circ} \mathrm{W}$ Washington, D.C., Coordinates
3. I rode 26.2 miles on my bicycle.
B. Latitude and longitude
___ 4. If a car travels 400 m in 20 seconds how fast is it going?
\qquad 5.

A. Speed
C. Constant speed
D. Reference point
\qquad 6.

E. Variable motion
F. Distance
7. Have you ever been sitting at a red light with a bus stopped next to you? You're kind of daydreaming, looking out the window at the side of the bus, when all of a sudden it feels like your car is rolling backwards! Then you realize that it was just the bus moving forwards. Why does this happen based on what you have learned about motion?

