\qquad
\qquad
\qquad

Water Cycle Quiz Practice

Fill-in-the-Blank - Write the letter for each term from the word bank that best completes each statement. Each word is only used once.
\qquad 1. \qquad is the type of energy that causes water to begin evaporation. It is represented by the number 1 in the illustration.
\qquad 2. \qquad is the phase in the water cycle when water turns from liquid to a gas and enters the air. It is represented by the number 2 in the illustration.

Word Bank
A. evaporation
B. relative
humidity
C. heat
D. precipitation
E. dew point
F. condensation
G. humidity
H. sling
psychrometer
I. transpiration
J. run-off
K. infiltration
L. cloud
\qquad 7. \qquad is the evaporation of water from plants.
\qquad 8. \qquad is the phase of the water cycle when water from rain and snow melt soaks into the ground.
\qquad 9. \qquad is moisture in the air.
\qquad 10. \qquad is the temperature at which water condenses. It most typically occurs in the morning hours after the air temperature has cooled over night.
\qquad 11. We use the term \qquad to compare how much moisture is in the air compared to how much moisture the air can hold at a particular temperature.
\qquad 12. A \qquad is a tool used to measure relative humidity. It is made up of wet- and drybulb thermometers.

Multiple Choice

\qquad 13. Colder air....
a. Can hold more water vapor than warm air
b. Can hold less water vapor than warm air
c. And warm air have the same ability to hold water vapor
d. Cannot hold any water vapor
\qquad 14. The water cycle is driven by energy from
a. The moon
b. The oceans
c. The Sun
d. Earth's core
_15. When water condenses on the outside of a glass, where does the water come from?
a. The water in the glass
b. The ice in the glass
c. New water is invented
d. Water from the air around the glass

Using a Chart - Use the chart below to answer questions \#16.
16. Two thermometers were used to measure relative humidity and the bulbs showed the following readings; determine the relative humidity.
dry bulb: $26^{\circ} \mathrm{C}$
wet bulb: $20^{\circ} \mathrm{C}$
relative humidity: \qquad \%

Extra Credit: (A total of 3 points is possible and you must show your calculations!) You will not lose points if you are incorrect so, it's worth a shot!

	Relative Humidity Chart (\%)															
$\begin{array}{\|c\|} \hline \text { Temp } \\ \text { Dry } \end{array}$	Difference Between Dry Bulb and Wet Bulb Temperatures (${ }^{\circ} \mathrm{C}$)															
$\left({ }^{\circ} \mathrm{C}\right)$	1	2	3	4	5	6		7	8	9	10	12	14	16	18	20
2	84	68	52	37	22	8										
4	85	70	56	42	29	26		3								
6	86	73	60	47	34	22		11								
8	87	75	63	51	39	28		18	7							
10	88	76	65	54	44	33		23	14	4						
12	89	78	67	57	47	38		29	20	11	3					
14	89	79	69	60	51	42		33	25	17	9					
15	90	80	71	62	54	45		37	29	22	14					
18	91	81	73	64	56	48		41	33	26	19	6				
20	91	82	74	66	58	51		44	37	30	24	11				
22	91	83	75	68	60	53		46	40	34	27	16	5			
24	92	84	76	69	62	55		49	43	37	31	20	9			
26	92	85	77	70	64	57		51	45	39	34	23	14	4		
28	92	85	78	72	65	59		53	47	42	37	26	17	8		
30	93	86	79	73	67	61		55	49	44	39	29	20	12	4	
32	93	86	80	74	68	62		56	51	46	41	32	23	15	8	1
34	93	87	81	75	69	63		58	53	48	43	34	26	18	11	5
36	93	87	81	75	70	64		59	54	50	45	36	28	21	14	8
38	94	88	82	76	71	65		60	56	51	47	38	31	23	17	11
40	94	88	82	77	72	66		62	57	52	48	40	33	26	19	13
42	94	88	83	77	72	67		63	58	54	50	42	34	28	21	16
44	94	89	82	78	73	68		64	59	55	51	43	36	29	23	18

A dry bulb reading on thermometer read $30^{\circ} \mathrm{C}$. A student then calculated the relative humidity to be 73\%.
\qquad a) For 1 point, determine the wet bulb reading.
\qquad b) For 1 point, convert the dry bulb reading to ${ }^{\circ}$ Fahrenheit. The conversion formula is:

$$
F=\frac{9}{5} C+32
$$

c) For 1 point, complete the following: If the amount of water vapor in the air stays the same and the air temperature decreases, the relative humidity will increase/decrease/stay the same/not be affected. (Circle the word or phrase that makes the statement true.)

