Name	Period	Date
CHAPTER FORCES		
2 Math Practice		
Finding Force, Acceleration, and Mass		
Solve each equation. Use correct u	units. Remember to show	v all work.
1. $m = 5 \text{ kg}, a = 8 \text{ m/s}^2$	2. $F = 75$ N, a	$= 5 \text{ m/s}^2$
Solve for force.	Solve for ma	ISS
3. $m = 15$ kg, $F = 60$ N	4. $F = 12$ N, a	$= 6 \text{ m/s}^2$
Solve for acceleration.	Solve for ma	ISS.

6. $m = 7 \text{ kg}, a = 5 \text{ m/s}^2$

8. m = 75 kg, F = 425 N

Solve for force.

Solve for acceleration.

5. F = 220 N. $a = 11 \text{ m/s}^2$

9. m = 27 kg, F = 108 N

Solve for mass.

Solve for force.

Solve for acceleration.

 $(\bigcirc$

Write and solve an equation to find the missing quantity.

- **10.** A bowling ball with a mass of 7 kg leaves your hand with an acceleration of 63 m/s^2 . What size force did you apply?
- **11.** How much does a 5 kg cart accelerate when you lift it with exactly 45 N of force?
- **12.** Suppose you and a classmate push a cart loaded with bricks to demonstrate force. You apply a force of 500 N, and the cart accelerates at a rate of 0.5 m/s^2 . What mass does the cart have?
- **13.** You push a merry-go-round on which your friend is riding. Your friend weighs 45 kg, and the merry-go-round weighs 163 kg. The merry-go-round leaves your hand with an acceleration of 52 m/s^2 . What size force was applied?
- 14. It takes a force of about 45 N to lift your backpack. You lift it with an acceleration of 3 m/s². What is the mass of the backpack?