$\qquad$
$\qquad$

## Humidity Notes

We already know that evaporation allows water to change into a gas and rise into our atmosphere. Eventually, it will condense into clouds when cooler temperatures are near. Well, what happens if the water vapor stays close to the ground where we are?

We use the term $\qquad$ to describe the evaporated water or water vapor in the air.

Humidity can $\qquad$ from place to place. The amount of water vapor that air can hold depends on $\qquad$ The $\qquad$ the air, the $\qquad$ water vapor it can hold. Think about it, warm air is less dense so it has more room for water vapor.

When the air is holding as much water vapor as possible at a certain temperature it has reached $\qquad$ . Think about a sponge, at some point it can no longer hold any more water. Well, the air has its limits too and the deciding factor is the temperature. The temperature at which this saturated air starts to condense onto surfaces or into precipitation is called the $\qquad$ .

Early in the morning, the air temperature usually cools, which allows water to condense. When this cooling and condensing causes water to form on grass and other surfaces, we call it $\qquad$ . If there is enough water vapor that condenses you can get clouds close to the ground which are called $\qquad$ —.

Similar to dew forming on grass, water vapor must have something to condense on to form $\qquad$
$\qquad$ in the upper layers of the $\qquad$ As water vapor rises into cooler air, it condenses on $\qquad$ and other particles. The water drops and ice crystals are so light, they stay $\qquad$ and collect more water forming clouds. The droplets/crystals continue to stay aloft until they become too heavy and fall as $\qquad$ —.

One final aspect of humidity that we are probably all familiar with is $\qquad$ which measure how much water vapor is actually there compared to how much water vapor air can actually hold. Think about your grade on a test. Your grade is a comparison of how many you got right to how much you could have earned. So, an $86 \%$ means you got 86 out of 100 possible points. Relative humidity is similar. $86 \%$ relative humidity means the air is holding $86 \%$ of the water it could hold at that $\qquad$ . The $\qquad$ the air, the more water vapor it can hold.

Relative humidity is measured with a $\qquad$ . It compares two thermometers, one with a dry bulb and one with a wet bulb. As water evaporates from the $\qquad$ , it cools the thermometer. When you compare the two thermometers, the bigger the temperature difference, the less humid the air is because humid air doesn't have a lot of room for water to evaporate. You need to know the $\qquad$ and the $\qquad$
$\qquad$ reading in order to calculate relative humidity.

Draw pictures that will help you remember humidity, relative humidity and dew point.

| Humidity | Relative Humidity |  |
| :--- | :--- | :--- |
|  |  | Dew Point |
|  |  |  |
|  |  |  |

## Atmosphere Investigation

Date:
Location:

Time:
Observer:

## Air Conditions

## Raleigh Durham International Airport

Temperature $\qquad$ -
Wind Speed $\qquad$
Air Pressure $\qquad$
Wind Direction $\qquad$

Relative Humidity $\qquad$ Heat Index $\qquad$

## Salem Middle School

Temperature $\qquad$ (dry bulb) $\qquad$ (wet bulb)
Difference in two bulb readings $\qquad$ -

## Calculating Relative Humidity

Using your temperature readings and the following charts, determine the relative humidity and heat index for Salem Middle School.

|  | Relative Humidity Chart (\%) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|c\|c\|c\|c\|} \text { Temp } \\ \text { Dry } \end{array}$ | Difference Between Dry Bulb and Wet Bulb Temperatures ( ${ }^{\circ} \mathrm{C}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\left(\begin{array}{l} \text { Bubb } \\ \left({ }^{\circ} \mathbf{C}\right) \end{array}\right.$ | 1 | 2 |  | 4 |  | 6 |  |  | 8 |  | 10 | 12 | 14 |  |  |  |
| 2 | 84 | 468 | 52 | 23 | 22 | 2 |  |  |  |  |  |  |  |  |  |  |
| 4 | 85 | 570 | 56 | 64 | 29 | 96 |  | 3 |  |  |  |  |  |  |  |  |
| 6 | 86 | 673 | 60 | 47 | 34 | 42 |  | 11 |  |  |  |  |  |  |  |  |
| 8 | 87 | 775 | 63 | 51 | 13 | 92 |  | 187 | 7 |  |  |  |  |  |  |  |
| 10 | 88 | 876 | 65 | 54 | 44 | 43 |  | 2314 | 14 | 4 |  |  |  |  |  |  |
| 12 | 89 | 978 | 67 | 75 | 47 | 73 | 29 | 29 | 20 | 11 | 3 |  |  |  |  |  |
| 14 | 89 | 979 | 69 | 60 | 51 | 142 |  | 33 | 25 | 17 | 9 |  |  |  |  |  |
| 15 | 90 | 080 | 71 | 162 | 54 | 445 |  | 372 | 29 | 22 | 14 |  |  |  |  |  |
| 18 | 91 | 181 | 73 | 36 | 56 | 648 |  | 413 | 33 | 26 | 19 | 6 |  |  |  |  |
| 20 | 91 | 82 | 74 | 46 | 58 | 85 |  | 44 | 37 | 30 | 24 | 11 |  |  |  |  |
| 22 | 91 | 183 | 75 | 56 | 60 | 05 |  | 46 | 40 | 34 | 27 | 16 | 5 |  |  |  |
| 24 | 92 | 284 | 76 | 66 | 62 | 25 |  | 49 | 43 | 37 | 31 | 20 | 9 |  |  |  |
| 26 |  | 85 | 77 | 770 | 64 | 45 |  | 514 | 45 | 39 | 34 | 23 | 14 | 4 |  |  |
| 28 |  | 85 | 78 | 72 | 65 | 55 |  | 53 | 47 | 42 | 37 | 26 | 17 | 8 |  |  |
| 30 |  | 86 | 79 | 97 | 67 | 761 |  | 55 | 49 | 44 | 39 | 29 | 20 | 12 | 2 | 4 |
| 32 | 93 | 86 | 80 | 74 | 48 | 86 |  | 565 | 51 | 46 | 41 | 32 | 23 | 15 | 58 |  |
| 34 | 93 | 87 | 81 | 175 | 59 | 96 |  | 5853 | 53 | 48 | 43 | 34 | 26 | 18 | 811 | 15 |
| 36 |  | 87 | 81 | 175 | 70 | 064 |  | 59 | 54 | 50 | 45 | 36 | 28 | 21 | 114 | 48 |
| 38 | 94 | 88 | 82 | 76 | 71 | 165 |  | 605 | 56 | 51 | 47 | 38 | 31 | 23 | 317 |  |
| 40 | 94 | 488 | 82 | 77 | 72 | 26 |  | 625 | 57 | 52 | 48 | 40 | 33 | 26 | 619 |  |
| 42 | 94 | 488 | 83 |  | 72 | 26 |  | 6358 | 58 | 54 | 50 | 42 | 34 | 28 | 82 |  |
| 44 |  | 48 |  | 78 | 73 | 368 |  | 6459 | 59 |  | 51 | 43 | 36 | 29 |  |  |


| Heat Index Chart (Temperature \& Relative Humidity) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Temperature ( ${ }^{\circ} \mathrm{F}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| \% | 9091 | 9192 | 2 93 | 9394 | 94 |  | 96 | 97 | 98 | 99 | 100 | 00101 | 102 | 103 |  | 4 |
| 90 | 12 | 23128 |  |  |  |  |  |  | 5 |  |  |  |  |  |  |  |
| 85 | 1511 | 19123 | 23127 | 27 |  |  |  | 45 | 5150 |  |  |  |  |  |  |  |
| 80 | 1211 | 15119 |  | 23112 | 127 |  |  | 40 | 144 | 49 | 9 154 | 54 | 64 |  |  |  |
| 75 | 0911 | 12115 |  | 1912 | 122 | 126 | 30 | 34 | +138 | 143 | 3147 | 4715 | 56 | 161 |  |  |
| 70 | 0610 | 09112 |  | 15111 | 118 | 122 | 125 | 29 | 133 | 37 | 7)14 | +1)145 | 4 | 54 |  |  |
| 65 | 0310 | 06108 |  | 11114 | 1141 | 117 | 121 | 124 | 127 | 31 | 1135 | $35 \mid 13$ | 43 | 147 |  |  |
| 60 | 100110 | 03105 |  | 0811 | 111 | 114 | 16 | 120 | 123 | 126 | 6\|129 | 29 | 36 |  |  |  |
| 55 | 9810 | 00103 |  | 05110 | 107 | 110 | 13 | 115 | 15118 | 121 | 124 | 24 | 131 |  |  |  |
| 50 | 9698 | 98100 |  | 0210 | 104 | 107 | 109 | 112 | 114 | 117 | 17119 | 19122 | 125 | 128 |  |  |
| 45 | 9496 | 9698 | 8100 | 00102 | 102 | 104 | 106 | 108 | 110 | 113 | 115 | 15 | 120 | 123 | 126 |  |
| 40 | 9294 | 9496 | 697 | 9799 | 99 | 101 | 103 | 105 | 107 | 109 | 9111 | 11113 | 116 | 18 | 121 |  |
| 35 | 9192 | 9294 | 495 | 9597 | 97 | 98 | 100 | 102 | 104 | 106 | 6107 | 7109 | 112 | 114 | 116 |  |
|  | 8990 | 9092 |  | 9395 | 95 | 96 | 98 | 99 | 101 | 102 | 2104 | 04106 |  | $110 \mid$ |  |  |
| e to full sunshine can increase HI values by up to $15^{\circ} \mathrm{F}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 80-90 ${ }^{\circ} \mathrm{F}$ |  |  | Fatigue possible with prolong exposure and physical activity. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 91-104 ${ }^{\circ} \mathrm{F}$ |  |  | Sunstroke, heat cramps, and heat exhaustion possible. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 105-129 ${ }^{\circ} \mathrm{F}$ |  |  | Sunstroke, heat cramps, heat exhaustion possible likely, and heat stroke possible. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 130^{\circ} \mathrm{F} \text { or } \\ & \text { Greater } \\ & \hline \end{aligned}$ |  |  | Heat stroke highly likely with continued exposure. |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Questions

1. Why does high humidity make it difficult to cool down on hot days?
2. How would you expect the relative humidity to change as you move from a room with high temperature to a room with a lower temperature? Both rooms have the same amount of water vapor.
3. Explain how a sling psychrometer is used to measure humidity.
4. Explain how humidity is related to cloud formation.
